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Abstract. Some aspeca of quantum tunnelling of a composite particle are clarified by a simple 
model. We calculate the probability that a couple of poinl particles bound Lo each other by a 
square well potential with a hard core tunnel through a rectangular potential barrier. It is shown 
that wonance structures appear in the transmission spectrum in some cases. which reflects the 
existence of qui-bound-states of the centre of mass motion amund the potential barrier. It is 
also shown that an inelastic tunnelling occurs in which the tcansitions in the relative motion are 
induced by the tunnelling of the centre of mass. 

1. Introduction 

The resonant tunnelling of a particle through a double-potential-Lmier structure in one 
dimension is a smking manifestation of the wave-like feature of quantum mechanical 
systems [l]. Recent progress in microfabrication techniques has made it possible to observe 
such a phenomenon in man-made quasi-one-dimensional systems, it has even been proposed 
that the effect should be utilized in future device technology [2]. The physical mechanism 
of the resonant tunnelling is quite simple. When the kinetic energy of the incident particle is 
resonant with one of the energy levels of the quasi-bound-states in the region sandwiched by 
the two potential bmiers, the interference between the paths for multiple reflections works 
constructively and highly enhances the transmission, just like the case of a Fabry-Perot 
optical interferometer. 

Although a number of theoretical works have studied tunnelling phenomena in various 
situations, quantum tunnelling of a composite particle, in which the particle itself has an 
internal structure, has yet to be clarified. For example, one may ask what the probability of 
transmission of a composite particle is if the potential barrier is defined for each component 
particles and how the internal motion is correlated with the tunnelling of the centre of mass. 
It should be noted here that the essential condition for the occurrence of resonant tunnelling 
is not the existence of double (or multiple) potential barriers but the existence of quasi- 
bound-states localimd around the potential barriers. Therefore, it can be expected that a 
composite particle will also show a resonant tunnelling through a single potential barrier if 
it is momentarily trapped around the barrier?. In the present paper, we investigate some 
aspects of the quantum tunnelling of a composite particle by a simplified-model calculation. 

t In this connection. Mashkevich [3] recently pointed out that the problem of the quantum tunnelling of N point 
particles rigidly connected with each other through a single potential barrier is equivalent lo that of a point pMicle 
through N baniers and thus the maximum probability of transmission is equal to unity, 
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2. Model and formulation 

Consider a homonuclear diatomic molecule which travels in one dimension and hits a 
rectangular potential barrier as shown in figure 1. If the barrier height is larger than the 
kinetic energy of the centre of mass, the molecule will be completely reflected classically 
but will tunnel through the barrier quantum mechanically with some probability. Let us 
investigate the probability of transmission. Each atom is regarded as a point particle with 
mass m. The interatomic potential is assumed to be deep enough so that we approximate it 
by a square well potential with infinite barrier height which confines the mutual distance of 
the atoms in the range [e - d / 2 ,  .? + d /2] ,  in which e is the average interatomic distance. 
The internal motion mimics the molecular vibration. This is a rather crude approximation 
of real systems but is enough to see some essential features of the problem. By changing 
d one can control the rigidity of binding. 
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- " =, DP a rectangular potential barrier. 

The Hamiltonian is given by 

where 

-a12 < x < a12 
otherwise V ( x )  = 

and 

e - dj2 < x < e  + d / 2  
otherwise U ( x )  = (3) 

in which VO is the banier height and a its width. Without loss of generality, we assume 
XI < x2 hereafter. Next we introduce the centre of mass Coordinate x t ( X I  + x2)/2 and 
the relative coordinate y xz - x ,  - e  +d/2 .  Then the Schrodinger equation is written as 

Here, the potential W ( x ,  y) takes a non-zero value W ( x ,  y) = VO only in the regions 
between two pairs of lines, y = 2x ?C a - e + d / 2  and y = -2x & a - e + d /2 ,  except 
for the area common to these regions where W(x,  y )  is given by W ( x ,  y) = 2V0. In the 
case e - d / 2  t a ,  the problem is thus equivalent to successive tunnelling through the #WO 

potential barriers by a single particle confined in the two-dimensional strip with width d as 
shown in figure 2(a). For e - d / 2  < a. the two barriers coalesce (figure 2(6)). Note that the 
boundaries of the potential barriers are slanted spatially. This means that a coupling occurs 
between the internal motion and the translational motion as the molecule tunnels through 
the barriers. 
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Figure 2. Schematic diagram of the potential-barrier srmCture in ihe xy plane in the case of 
(a) e - d j 2  > a and (b) e - d j Z  ca. W ( x ,  y )  = Vn in the daned area, W ( x , y ) = Z V o  in the 
dashed area and W ( x ,  y )  = 0 otherwise. 

The wave function U(x, y) is expanded in, a series of complete sets of eigenfunctions 
of the internal mode as 

where 

which satisfies 

with &" = @ 2 / m ) ( n n / d ) 2  and the boundary condition ~ " ( 0 )  = qn@) = 0. We will 
call the nth eigenstate of the internal mode channel n. For an incident wave with total 
energy E satisfying the condition E. c E < E.+,. propagating states 'can exist in the region 
out of the potential barrier for channels up to n. The excitation and deexcitation of the 
internal mode will occur induced by the tunnelling of the centre of mass coordinate. This 
is somewhat analogous to the multi-channel scattering in atomic and molecular collisions 
[4]. The transmission probability T,,,@) for the incident wave coming from the lefi-hand 
side of figure 2 in channel A and going out to the right-hand si& in, channel n' is calculated 
by the transfer matrix method as follows. 

As shown in figure 2, lhe strip is divided into three regions: the potential-free region 
x < xL (denoted as I) and x > x~ (denoted as II) and the active region x~ < x < xn,  where 
x~ = -(2a + 21 + d)/4, XR = (2a + 2L + d)/4. In the regions I and U, the wave function 
Q ( x ,  y) of equation (4) can be written as 

m 
~ * ( x ,  y) = C [ a i ( n .  +l)eiLx + ar(n. -I)e-ikmxlp,(y) A = I, II (8 )  

where k. = 2.J-p. Since E, takes all the eigenvdues of the internal mode, not 
only the real values but also the imaginary values of k,, are included. The convention 
f i  = +i is adopted here and hereafter. Therefore, qfn, + I )  rqresents the amplitude 
of a propagating state towards the right-hand side of figure 2 or  an evanescent state which 

ll=l 
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decays in this duection. The coefficients al(n, U) are connected by the transfer mahix MI. U 

as 

N Saito and Y Kayanuma 

where U = &l. 

the region x 
then written as 

Now we replace the original system by a fictitious one in which the potential barrier in 
0 is entirely removed. The wave function %(Y, y) in the region Y > 0 is 

(10) 
W 

YR(x, y) = 'jJaR(n. tl)eikaX + aR(n. - ~ ) e - ' t ~ ] c ~ , ( y ) .  
"=I 

The transfer matrix M ~ ~ [ n , u ; n ' , u ' )  from I to the region x > 0 is calculated in the 
following way. We define the Hamiltonian matrix H,,,(x) by 

d 
Hn&) = 1 (a,'(yW(x, Y)w(Y)dy. (1 1) 

Then, the Schrodinger equation (4) is cast into a set of simultaneous differential equations 
for @Ax) 

with 
d 

Wa&) = 1 (a,3r)w(x,y)rp.G9dy. (14) 

The infinite set of simultaneous equations (12) is truncated into a finite one by taking 
into account a sufficient number of channels N from the lowest. The N simultaneous 
second-order differential equations are transformed into 2N equations of first order and 
solved numerically from x = 0 to XL under the boundary condition 

where U = &I and the prime indicates the derivative. Then the (n, U )  row of the transfer 
matrix M 1 , ~ ( n ,  U :  n', U') is obtained by smoothly connecting the solution to that in the 
region x Q XL as the solution of simultaneous equations 

@&L) = 

q ~ , ( x L )  = iu'k.,MI,R(n, U ;  n'.u')exp(iu'kn,xL). 

M I , R ( ~ ,  0; n', U') exp (iu'k,mJ 
0 ' = l l  

(16) 

o'=* I 

The domain of the numerical integration actually needed can be reduced to the region 
where V,,.,(x) has an off-diagonal component. For t - d/2 > a (figure 2(a)), it can 
be further reduced by using the symmetry properly of the barrier structure under spatial 
inversion. 
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Next, we consider a second fictitious system in which the potential barrier in the region 
x < 0 is entirely removed. The transfer matrix ML.Il(n,u; n',u') from the region x < 0 
to II is defined in the same way as MI, ~ ( n ,  U ;  n', U ' ) .  From the symmetry argument, 
one can readily derive the formula ML," = M& where M1.k is a matrix defined by 
M!,R(n,u; n',u') = MI,k(n, - u ; n ' ,  -U'). Then, the transfer matrix M 1 , ~  for the original 
system is given by the matrix multiplication M," = MIJMLJI. 

The transmission probability T,,.-(E) for E - sn z 0 and E -E., > 0 is calculated by 
imposing a suitable asymptotic condition at infinity on the wave function. Namely, in the 
equation 

n' C' 

we put q ( m ,  t1) = 8m,n (m = 1.2, .  . . , N) and an(", -1) = 0 (m' = 1.2,. . . , N) and N 
simultaneous equations for an(n', +I )  are solved. Then, T,,@) is given by 

Tn,.,(E) = ldn ' ,  +1)lZk.,/k". (18) 

The coefficient a~(n' ,  -1) can be calculated by putting the obtained nrr(n', +1) into the right- 
hand side of equation (17), by which the reflection probability is given as lar(n', -1)lzk,,/kn. 
From the symmetry under the time reversal and the spatial inversion x -+ - x ,  the relation 
Tn,n,(E) = Tn,.-(E) is easily derived. The total transmission probability T,(E) is given by 
Tn(E) = En- Tn,n,(Q. 

3. Numerical results and discussion 

In figure 3, the transmission probabilities are shown for fixed values of parameters, a/Ao = 1 
and t / h o  = 5 where l o  = E / a ,  against the incident centre of mass kinetic energy E-&! 
normalized by VO with parameter d varying as d/Ao = 5, 7, 8 and 9.5. The solid curve 
represents C,1(E) ,  the dashed curve Z,z(E)  and the dotted curve c,3(E). Channels up 
to N = 7 have been taken into account in this calculation. It has been ascertained that 
numerical results converge well for these parameter values. 

Figure 3(u) shows a typical feature of resonant tunnelling. Because the threshold for 
the excitation of the second channel, E = E*, lies above E = VO + E I ,  the line shape is 
almost the same as that of the one-dimensional resonant tunnelling corresponding to the 
cased = 0. The three peaks originate from the resonance with the three quasi-bound-states 
formed in the trapezoid well between the barriers. Physically, these bound states correspond 
to the situation where one of the two atoms has transmitted the potential barrier while the 
other is left behind and thus the molecule is trapped momentarily. Note that the maximum 
values of f i , ~ ( E )  reach unity at resonances. 

As d is increased, the threshold energy for the excitation of the intemal mode decreases 
and additional quasi-bound-states appear in the potential well associated with the excited 
channels. The threshold energies of the second channel are indicated by the small solid 
arrows on the abscissa and that of rhird channel by the dotted mow. Above threshold, 
the transmission spectrum Z.l(E) becomes a little more complicated with extra peaks and 
dips. Furthermore, the transmission probabilities T&?) and T1,3(E) appear as shown by 
the dashed cuves in figures 3(b)-(d) and the dotted curve in figure 3(d) respectively. These 
inelastic transmissions mean that a diatomic molecule travelling in its ground state hits a 
potential barrier, tunnels through it and goes away with a velocity slowed down in the 
excited state of the internal mode. 
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Fm 3. The transmission probabilities plotted against ( E  - ei)/Vo for parameter valves 
n/Ao = 1, CJh = 5. and (a) djAo = 5,  (b) dJAo = 7, (c) dJAo = 8, ( d )  d/Ao = 9.5. The solid 
curve represents F.1, the dashed line T1.2 and the dotted curve TI.,. The small solid arrows on 
the abscissa indicate the threshold energy for the excitation of the second channel. The dotted 
m w  in ( d )  indicates lhat for the third channel. 

Although the motional states in the x and y directions are not separable in the trapezoid 
well, one may roughly assign quantum numbers (m. j )  for each quasi-bound-state, which 
means the jth bound state. in the mth channel. This is valid as long as d is relatively 
small and the trapezoid can be approximated by a rectangle. As d becomes larger for 
fixed values of a and e, the characterization of the quasi-bound-states in this way would 
be endangered. However, one may still use the same quantum numbers to denote the 
resonance peaks in so far as the peaks are isolated from each other. Furthermore, one 
can assign a fromition path to each resonance denoted as (n,  k) + (m, j )  + (n', k'), 
which means an in-coming state with wave vector k in the nth channel is resonant with 
the quasi-bound-state (m. j )  and is transmitted as an out-going state with wave vector k' 
in the n'th channel. For example, in figure 3(c), the thud peak of the spectrum Tt , t (E)  
(the peak at ( E  - EI ) /VO = 0.59) corresponds to the path (1, k) -+ (2.1) -+ (1, k). The 
interference with the path (1, k) -+ ( I ,  3) -+ (1, k) gives rise to the strong asymmetry of 
this peak. At the same energy, the sharp resonance peak appears in the spectrum C,z (E)  
which comes from the path ( 1 , k )  + (2, 1) + (2.k'). The dip in the spectrum T, , l (E)  
around ( E  - E I ) / V O  Y 0.83 is also due to the destructive interference between the paths 
(1 ,k)  + (2,2) + (1,k) and (1,k) -+ (1 .3)  + ( l , k ) .  Resonance structures of other 
spectra in figure 3 can be assigned in the same way. Note that the intensity of the extra 
structure strongly depends on d .  We find a general feature that the maximum value of the 
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total transmission probability T, (E)  = E,, z..(E) for a resonance peak reaches unity as 
long as it lies in the energy region where the excitation of the internal mode is not allowed. 

In figure 4, T2,2(E) is plotted for the same parameter values as figure 3(d),  ajho = 1, 
e l& = 5 and d / &  = 9.5, against ( E  - E I ) / V O .  The lowest two peaks are assigned as 
due to the resonance with the quasi-bound-states (2. I )  and (2 ,Z) .  It is found that the 
transmission probability is relatively low when the incident wave comes in the excited state 
of the intemal mode. 

~~~, , , , - ~  

a 

Figure 4. The transmission probability Tz,? plotted against 
00 (E--~~)IV~fo~parametervaluesa/Ao = l . l /Ao=5 ,and  

dlAo = 9.5. 

8 

( E  - E I ) / ~  

We have also investigated the change of the transmission spectrum due to the change 
of the averaged size of the molecule e for fixed values of a and d .  The resonance peaks 
shift to the higher energy side as 4 is decreased and, for relatively small values of d ,  even 
the lowest peak disappears from the sub-barrier region at a critical value of e. In the case 
that the molecule is much smaller than the width of the potential barrier, t + d j 2  << a ,  it 
behaves essentially as a single particle with mass 2m which tunnels through the potential 
barrier with the barrier height ZVo. 

To summarize, we have clarified some features of quantum tunnelling of a composite 
particle through a potential barrier. The tunnelling behaviour strongly depends on the ratio 
of the averaged size of the composite particle to the width of the potential barrier and on the 
rigidity of binding. It has been demonstrated that resonance structures in the transmission 
spectrum are expected in some cases even for tunnelling through a single potential barrier. 
The condition for this is that the parameter values are such that there exists a configuration 
in which the composite particle is momentarily trapped by the barrier. It has also been 
shown that an inelastic tunnelling occurs in some cases in which the conversion of the 
energy is induced between the centre of mass translational mode and the internal mode. 

Although actual calculations have been done for a one-dimensional model, one may 
well expect that essentially the same conclusion will be drawn in higher dimensions as 
well, since the physical origin of tunnelling resonance is the momentary trapping of the 
composite particle at the potential barrier. which is independent of dimensionality. A slight 
complication in higher dimensions is that the intemal degrees of freedom consist not only 
of the vibrational mode but also of the rotational mode. These two modes will couple with 
each other and also with the translational mode as the particle tunnels through or is reflected 
by the barrier. 

As for the experimental possibility of observing such a phenomenon, we would like to 
point out that the ballistic exciton which tunnels a hetero-structure such as GaAs-AlGaAs- 
GaAs may show resonant tunnelling due to a mechanism analogous to that treated here. Part 
of the AlGaAs provides potential barriers for the electron and the hole. The momentarily 
trapped configuration in this case is such that either the electron or the hole is transmitted 
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through the barrier while the other is left on the opposite side and the two particles combine 
with each other by the attractive Coulomb force. We have recently performed a numerical 
study of quantum tunnelling of a Wannier exciton in a one-dimensional model [5 ] .  It 
was found that a series of sharp resonance structures actually appears in the transmission 
spectrum as a function of incident kinetic energy of the exciton. Experimental verification 
of such a structure would be possible by optical measurement, namely, by observing the 
reflectance or the transmittance of light around the excitonic resonance energy in a sample 
containing a hetero-banier smcture. Details will be presented elsewhere. 
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